Tag Archive for Earth and Environmental Sciences

Students, Faculty, Alumni Attend Planetary Science Conference in Texas

Students, faculty and alumni involved in planetary science attended the 46th Lunar and Planetary Science Conference March 16-20 in Houston, Texas.

Jim Greenwood, assistant professor earth and environmental sciences, gave a talk titled “urCl-KREEP? Cl-rich glasses in KREEP basalts 15382 and 15386 and their implications for lunar geochemistry.” Martha Gilmore, chair and professor of earth and environmental sciences and the George I. Seney Professor of Geology, met with the Venus Exploration Analysis Group as a member of its Executive Committee.

Jack Singer ’15 and Lisa Korn MA ’15 presented posters.

Several Wesleyan alumni also made presentations at the conference including James Dottin ’13 (E&ES), now a PhD student at the University of Maryland; Tanya Harrison MA ’08 (E&ES), now a PhD student at the University of Western Ontario; Ann Ollila MA ’08 (E&ES), now at Chevron; Nina Lanza MA ’06 (E&ES), now a scientist at Los Alamos National Lab; Bob Nelson MA ’69 (astronomy), senior scientist at Planetary Science Institute; Ian Garrick-Bethell ’02 (physics), assistant professor at the University of California – Santa Cruz.

Jack Singer ’15 presented a poster titled "High fluorine and chlorine in a chromite-hosted melt inclusion from Apollo 12 olivine basalt 12035.” He was supported by NASA Connecticut Space Grant and is the McKenna Scholar in E&ES. Jim Greenwood is his advisor.

Jack Singer ’15 presented a poster titled “High fluorine and chlorine in a chromite-hosted melt inclusion from Apollo 12 olivine basalt 12035.” He was supported by NASA Connecticut Space Grant and is the McKenna Scholar in E&ES. Singer’s advisor is Jim Greenwood, assistant professor earth and environmental sciences.

Lisa Korn, MA ’15 presented a poster titled "Possible Carbonate Minerals within an Unnamed Gulled Crater in Eridania Basin, Mars.”  She was supported by NASA Connecticut Space Grant and the E&ES Foye Fund. Scott Murchie, the Principal Investigator of the instrument whose data she uses (the CRISM spectrometer in orbit at Mars) showed her work to NASA as an example of the important new discoveries being made with the instrument. Korn's advisor is Marty Gilmore, chair and professor of earth and environmental sciences and the George I. Seney Professor of Geology.

Lisa Korn MA ’15 presented a poster titled “Possible Carbonate Minerals within an Unnamed Gullied Crater in Eridania Basin, Mars.” She was supported by NASA Connecticut Space Grant and the E&ES Foye Fund. Scott Murchie, the Principal Investigator of the instrument whose data she uses (the CRISM spectrometer in orbit at Mars) showed her work to NASA as an example of the important new discoveries being made with the instrument. Korn’s advisor is Martha Gilmore, chair and professor of earth and environmental sciences and the George I. Seney Professor of Geology.

E&ES major  James Dottin ’13 met Marty Gilmore at the conference.

E&ES major James Dottin ’13 met Martha Gilmore at the conference.

Resor Explores Connecticut’s Geological History

Phillip Resor at Connecticut's "Lake Char" fault zone. (Photo courtesy of Patrick Skahill/WNPR).

Phillip Resor at Connecticut’s “Lake Char” fault zone. (Photo courtesy of Patrick Skahill/WNPR).

Phillip Resor, associate professor of earth and environmental sciences, was recently interviewed on WNPR about an amazing part of Connecticut’s geological history. According to the story, several hundred million years ago, Connecticut was in the middle of a massive continental collision, which formed the super continent Pangea and pushed up huge mountains. Deep beneath the earth, a borderland beneath the two continents formed. Today, geologists call it the Lake Char fault system; it runs along the I-395 corridor in southeastern Connecticut.

Resor took WNPR reporter Patrick Skahill to East Haddam by Gillette Castle to walk along the banks of the Connecticut River, and showed him fine black patterns flowing through the hardened cliff which showed evidence of ancient earthquakes.

“That super-fine grain material actually is what we call ‘pseudotachylite.’ It was a melt — a frictional melt in the fault,” Resor said. “If you think about rubbing your hands together, you’ll get heat, right? So if you rub fast enough, you’ll raise the temperature to the point where you can actually melt the rock.”

Resor explained that as Pangea broke apart about 200 million years ago, the Atlantic Ocean began to open up. A little piece of that ancient continent called “Gondwana” had broken off and was left behind, stuck to Connecticut. Geologists call this zone “Avalonia.”

Read more and see pictures of Resor and the area he studies here.

Thomas Uses CT Scans, Computer-Aided Visualizations to Study and Teach Microfossils

Ellen Thomas, research professor of earth and environmental science, holds two samples of microfossils that were printed on a 3-D printer at the American Museum of Natural History. The printed fossil models are about 8,000 times bigger than the actual limestone fossils.  Ellen Thomas holds two planktonic forms which lived closer to the surface of the water. At left is Hantkenina alabamensis, which lived when the world was warm, and went extinct at the time of formation of the Antarctic ice cap about 33.7 million years ago. At right is Globigerinella siphonifera. It lives in the subtropics today, in open ocean. "When it's alive, it has spines and protoplasm inside and along the spines," she said.

Ellen Thomas, research professor of earth and environmental science, holds two samples of microfossils that were printed on a 3-D printer at the University of Iowa. The printed fossil models are about 8,000 times bigger than the actual limestone fossils. These planktonic forms lived closer to the surface of the water. At left is Hantkenina alabamensis, which lived when the world was warm, and went extinct at the time of formation of the Antarctic ice cap about 33.7 million years ago. At right is Globigerinella siphonifera. It lives in the subtropics today, in open ocean. “When it’s alive, it has spines and protoplasm inside and along the spines,” she said. (Photos by Olivia Drake)

This slide contains 65 different microfossil specimens taken from an ocean drilling site in the eastern Indian Ocean. Some are estimated to be 55.8 millions years old and span a duration of 170,000 years. During this time, there was an extinction of deep-sea benthic foraminifera which may have been caused by rapid global warming.

This slide contains more than 300 microfossil specimens from an ocean drilling site in the eastern Indian Ocean. These are estimated to be 55.8 millions years old, and lived during a period of extreme global warming with a duration of 170,000 years. At the beginning of this warm period, there was a mass extinction of deep-sea benthic foraminifera, which may have been caused by the rapid global warming and ocean acidification.

#THISISWHY

Research Professor Ellen Thomas grasps a glass-enclosed sample of hundreds of microfossils, each a white fleck of limestone barely visible to the human eye.

“The first time students look at these they say, ‘they all look the same to me,’ but in reality, they are all have very different shapes,” Thomas says. “Even under a microscope, it can be difficult for a new eye to see the differences, but each species has its own shape; some have a much more open, light structure because they lived floating in the oceans close to the surface. Others have denser shells and lived on the bottom of the ocean, or within the mud. And each one can tell us, in its chemical make up, what the environmental conditions were like at the time that they lived and built their shells.”

By studying and analyzing microfossils, Thomas and fellow scientists are able to explore aspects of climate change on a variety of timescales,

Paper by Gilmore, Harner MA ’13 Says Mars May Host Hydrous Carbonate Minerals

Martha Gilmore, the George I. Seney Professor of Geology, and her former graduate student Patrick Harner MA ’13 are the co-authors of a paper titled “Visible–near infrared spectra of hydrous carbonates, with implications for the detection of carbonates in hyperspectral data of Mars,” published in Icarus, Vol. 250, pages 204-214, April 2015.

The paper suggests that hydrous carbonate minerals might be relevant on Mars.

“We bought and made these unusual minerals in my lab and then took spectra of them to simulate what Mars orbiters might see. Carbonate minerals form in water on Earth (e.g., limestones), and are predicted for Mars, but to date are uncommon on Mars,” Gilmore explained. “We suggest this may be because Mars may host hydrous carbonates which look very different than the anhydrous carbonates everyone is looking for in the data.”

Gilmore also is chair and professor of earth and environmental sciences.

Art Books Illustrate Environmental Concerns, Lessons

From left, Sophia Ptacek '18 and Khephren Spigner '18 show their artist book to instructor Kim Diver.

From left, E&ES 197 students Sophia Ptacek ’18 and Khephren Spigner ’18 show their final project to instructor Kim Diver.

Students from Introduction to Environmental Studies (E&ES 197) presented their final projects Dec. 11 in Exley Science Center.

The Project Showcase involved 80 students informally presenting artists books, GIS story maps, children’s stories, fictional journals and other creative explorations.

“All projects are related to environmental issues in the Connecticut River,” said course instructor Kim Diver, visiting assistant professor of earth and environmental sciences. The project is associated with the Center for the Arts’ Feet to the Fire initiative.

Several Wesleyan scholars and staff volunteered their time to demonstrate artist books to the students including Kate TenEyck, art studio technician and visiting assistant professor of art; Suzy Taraba, director of Special Collections and Archives; Rebecca McCallum, cataloguing librarian; and Joseph Smolinski, the Menakka and Essel Bailey ’66 Distinguished Visiting Scholar in the College of the Environment. Erinn Roos-Brown, program manager in the Center for the Arts, helped initiate the idea for the artist book projects.

Photos of the Project Showcase are below: (Photos by Cynthia Rockwell)

Chantel Jones '17 and Tanya Mistry '17.

Chantel Jones ’17 and Tanya Mistry ’17.

GIS Service Learning Class Shares Field Research, Projects with Community

As part of the GIS Service Learning Laboratory course, Katy Hardt '15 researched the wetlands, waterways and critical habitats of the northwest section of Middletown. Hardt and fellow group members John Murchison '16 and Catherine Reilly '15 presented their findings to the Middlesex Land Trust.

As part of the GIS Service Learning Laboratory course, Katy Hardt ’15 researched the wetlands, waterways and critical habitats of the northwest section of Middletown. Hardt and fellow group members John Murchison ’16 and Catherine Reilly ’15 presented their findings to the Middlesex Land Trust.

Five groups of students enrolled in the Geographical Information Systems (GIS) Service Learning Laboratory course E&ES 324 spent their semester helping local organizations learn more about land parcels in the City of Middletown.

On Dec. 1, the students presented their research to fellow students, faculty, staff, community members and community partners.

Kim Diver, visiting assistant professor of earth and environmental sciences, taught the class.

Kim Diver, visiting assistant professor of earth and environmental sciences, taught the class.

Kim Diver, visiting assistant professor of earth and environmental sciences, taught the class, which included included lessons on geographic information systems (GIS) concepts and spatial data analysis and visualization.

“GIS are powerful tools for organizing, analyzing and displaying spatial data,” Diver explained. “GIS has applications in a wide variety of fields including the natural sciences, public policy, business, humanities or any field that uses spatially distributed information. In this class, students worked to solve local problems in environmental sciences.”

The students worked closely with community partners from the Middlesex Land Trust, Middletown Conservation Commission, the Connecticut Department of Energy and Environmental Protection and others to design a GIS, collect and analyze data, and

NASA Supports Greenwood’s Extraterrestrial Materials Research

James “Jim” Greenwood

Jim Greenwood

Jim Greenwood, assistant professor of earth and environmental sciences, was awarded a Faculty Seed Research Grant from the Connecticut Space Grant Consortium, supported by NASA. The honor comes with a $6,000 award.

Greenwood will use the grant to support his research on “D/H of ‘Dry’ Extraterrestrial Materials.”

Understanding the distribution, delivery, and processing of volatiles in the solar system is of fundamental interest to planetary science. Volatiles influence a number of important properties of planetary bodies, such as the cooling, differentiation, volcanism, tectonism, climate, hydrosphere/atmospheres and especially habitability.

Greenwood will use the award to develop a new state-of-the-art inlet system for the measurement of hydrogen and water and their hydrogen isotope composition in nominally anhydrous extraterrestrial materials. This inlet system will work in conjunction with the Wesleyan Hydrogen Isotope Mass Spectrometer, a Thermo Delta Advantage isotope ratio mass spectrometer installed in August 2014.

With the new system in place by the end of the project period, Greenwood and fellow researchers will be in position to measure hydrogen and water in two Apollo mare basalt rock samples.

“This will increase sensitivity for water by 250x our current measurement,” Greenwood said. “The added capability will allow us to make new and exciting measurements of volatiles in important planetary materials, such as these lunar rock samples.”

Read past News @ Wesleyan stories on Greenwood here.

Studies by Varekamp, Thomas Published in Paleoceanography

varekamp

Joop Varekamp

Ellen Thomas

Ellen Thomas

Wesleyan faculty Joop Varekamp and Ellen Thomas are among the authors of a paper on rates of sea-level rise along the eastern U.S. seaboard titled “Late Holocene sea level variability and Atlantic Meridional Overturning Circulation,” published in the journal Paleoceanography, Volume 29, Issue 8, pages 765–777 in August 2014. Varekamp is the Harold T. Stearns Professor of Earth Science, professor of earth and environmental sciences and professor of environmental studies. Thomas is research professor of earth and environmental sciences at Wesleyan, and also a senior research scientist in geology and geophysics at Yale University.

Ellen Thomas discovered that microfossils, such as this  foraminifera fossil, reveal that warm oceans had less oxygen.

Ellen Thomas discovered that microfossils, such as this foraminifera fossil, reveal that warm oceans had less oxygen.

Pre-20th century sea level variability remains poorly understood due to limits of tide gauge records, low temporal resolution of tidal marsh records, and regional anomalies caused by dynamic ocean processes, notably multidecadal changes in Atlantic Meridional Overturning Circulation (AMOC). In the study, Varekamp and Thomas examined sea level and circulation variability along the eastern United States over the last 2,000 years, using a sea level curve constructed from proxy sea surface temperature records from Chesapeake Bay, and 20th century sea level-sea surface temperature relations derived from tide gauges and instrumental sea surface temperatures.

Thomas also is a co-author of a paper titled ‘I/Ca evidence for upper ocean deoxygenation during the PETM‘ published in the Paleoceanography, October 2014.

In this paper, Thomas suggests that the Paleocene-Eocene Thermal Maximum (PETM), a potential analog for present and future global warming, may help in such forecasting future deoxygenation and its effects on oceanic biota. Forecasting the geographical and bathymetric extent,

Royer’s Study Suggests that the Meteorite That Wiped Out Dinosaurs Changed Forests

Dana Royer, associate professor of earth and environmental sciences.

Dana Royer, associate professor of earth and environmental sciences, is the co-author of a study that suggests fast-growing deciduous plants replaced slower-growing evergreen plants after an impact of a meteorite 60 million years ago. (Photo by Olivia Drake)

Sixty-six million years ago, a meteorite struck the Earth with enough force that the ensuing environmental changes, including floods, earthquakes, variable temperatures and light-obscuring dust clouds, possibly wiped out dinosaurs and other pre-historic life. Scientists believe this opened a path for mammals, and ultimately humans, to evolve.

A new study by Dana Royer, associate professor of earth and environmental sciences, and colleagues from the University of Arizona and the Denver Museum of Nature and Science suggests that the chaos in the wake of the space rock’s impact changed the Earth’s plant life as well. Deciduous plants survived and flourished to a much greater extent than flowering evergreens, the scientists believe, probably because their properties made them much better able to respond to climate conditions post-impact. The deciduous plants, not needing to maintain their leaves year round, essentially needed less energy for survival.

Royer’s Study Published in PLOS Biology

Dana Royer

Dana Royer

Dana Royer, associate professor of earth and environmental sciences, is the co-author of “Plant Ecological Strategies Shift Across the Cretaceous-Paleogene Boundary,” published in PLOS Biology on Sept. 15.

The study reveals that a meteorite that hit Earth 60 million years ago – and may have led to the mass extinction of the world’s dinosaur population – also led to a shift in the landscape of plants, particularly deciduous plants.

Royer and his colleagues showed how they applied bio-mechanical formulas to fossilized leaves of flowering plants dating from the last 1.4 million years of the Cretaceous period and the first 800,000 of the Paleogene. Read more about Royer’s study in this News @ Wesleyan article.

Resor Delivering 6 Lectures to Petroleum Geoscientists in Australia

Associate Professor Phil Resor is delivering six lectures in Australia this June.

Associate Professor Phil Resor is delivering six lectures in Australia this June. He is the 2014 AAPG Distinguished Lecturer.

Philip Resor, associate professor of earth and environmental sciences, is taking his knowledge of petroleum down under.

Between June 18-26, Resor, a Distinguished Lecturer for the American Association of Petroleum Geologists (AAPG), is delivering six lectures in Australia. The talks are geared toward members of the Petroleum Exploration Society of Australia (PESA) and a general petroleum industry audience.

Phil Resor at a talk in Melbourne.

Phil Resor at a talk in Melbourne.

While abroad, Resor will speak on “Syndepositional Faulting of Carbonate Platforms” and “Revisiting the Origin of Reverse Drag.”

He’ll be lecturing in Melbourne, Adelaide, Perth, Brisbane, Sydney and Canberra.

A specialist in structural geology, Resor’s work integrates field mapping, remote sensing, and numerical modeling to better understand the mechanics of faulting. Recent projects have focused on the causes of syndepositional faulting in carbonate platforms, deformation around normal faults, folding on Venus, and the effects of fault zone geometry on earthquake slip.

Prior to joining the faculty at Wesleyan, Resor worked for several years as an exploration geologist in the oil and gas industry.

sydney

Phil Resor in Sydney.

Singer ’15 to Study Moon Rocks as Connecticut Space Grant Fellow

Jack Singer '15 holds a fragmented lunar sample (Apollo 12039,3), a crucial sample for studying his mineral of interest — apatite — on the moon.

Jack Singer ’15 holds a fragmented lunar sample (Apollo 12039,3), a crucial sample for studying his mineral of interest — apatite — on the moon. This summer, Singer received a Connecticut Space Grant College Consortium grant to fund his summer research in the Earth and Environmental Sciences Department.

As a recent recipient of an undergraduate research fellowship, Jack Singer ’15 is spending his summer at Wesleyan studying the geochemical evolution of the moon. 

The fellowship, supported by the Connecticut Space Grant College Consortium, comes with a $5,000 award. Grantees are expected to work on research related to space/aerospace science or engineering under the guidance of a faculty member or a mentor from industry.

By using a microscope in Wesleyan's Solar Systems Geochemistry Lab, Jack Singer takes a closer look at a Lunar sample.

By using a microscope in Wesleyan’s Solar Systems Geochemistry Lab, Jack Singer takes a closer look at a lunar sample.

For the next three months, Singer will work on various research projects with his advisor James Greenwood, assistant professor of earth and environmental science. Singer will first prepare a fragmented lunar sample (Apollo 12035,76) for analysis under an ion microprobe. An ion microprobe applies a beam of charged ions to the sample and helps determine the composition of the material.

This rock contains olivine, a mineral that is mysteriously sparse in many different lunar samples.

“By analyzing the melt inclusions contained within olivine in this rock, I’ll be able to better understand geochemical evolution of the moon,” Singer said.

Singer’s second project is more experimental. He’s attempting to model and quantify diffusion in a late-stage lunar environment (one of the last regions to cool on the moon) by synthesizing a granite-rich model lunar glass.

Singer will heat this glass past its melting point and place it in contact with solid terrestrial apatite — the Moon’s major water-bearing mineral — and measure how elements diffuse across the glass-grain (or solid-liquid) boundary.

Jack Singer and his advisor, James Greenwood, will travel to Japan this summer to use an ion microprobe at Hokkaido University.

Jack Singer and his advisor, James Greenwood, will travel to Japan this summer to use an ion microprobe at Hokkaido University.

“This type of analysis helps us to better understand the processes that occurred during the last stages of lunar cooling,” he explained.

In addition, Singer and Greenwood will travel to Japan this summer to use an ion microprobe at Hokkaido University.

“This machine allows us to analyze and measure stable isotope ratios in the minerals we are interested in, and can therefore tell us something about the fractionation and geochemical history of the lunar body,” Singer said.

Next fall, Singer will write about his research findings.